Mostek Wheatstone'a, Politechnika Poznańska, Metrologia - sprawozdania
[ Pobierz całość w formacie PDF ]
I.Pomiary i obliczenia
R
X1
LpR
1
/R
2
R
P
R
P1
+i
01
R
P2
-i
02
R
X1
ΔR
P
Δi
0
δ
n
R
X
100
1487,6- - - -148,760,0045,0
2,69×10
−11
2
100
1
10
1000
1488,4- - - -148,840,0034,2
2,39×10
−11
3
1000
1000
148,4 - - - -148,400,0164,8
1,12×10
−9
Korzystamzewzorów
:
R
x
=
R
p
×
R
1
R
2
ΔR
p
R
p
×
0,1×
μ
δ
n
R
x
=
ΔI
0
1)
R
x1
=1487,6×
10
100
=148
,
76
δ
n
R
x
=
0,004
1487,6
×
0,1×0,0005
5,0
=
0,004
1487,6
×
0,00005
5,0
=2,69×10
−11
R
x
=148
,
76±1,69×10
−11
2)
R
x
=1488,4×
100
1000
=148
,
84
δ
n
R
x
=
0,003
1488,4
×
0,00005
4,2
=2,39×10
−11
R
x
=148
,
84±2,39×10
−11
3)
R
x
=148,4×
1000
1000
=148
,
40
δ
n
R
x
=
0,016
148,4
×
0,00005
4,8
=1,12×10
−9
R
x
=148
,
40±1,12×10
−9
R
X2
Lp
R
1
/R
2
R
P
R
P1
+i
01
R
P2
-
i
02
R
X2
ΔR
P
Δi
0
δ
n
R
X
1
100
100
1895,4 - - - -1895,400,0021,1
4,80×10
−11
2
100
1000
18953,5- - - -1895,350,1
1,4
1,88×10
−10
3
1000
1000
1896,5 - - - -1896,500,0021,1
4,79×10
−11
1)
R
x
=1895,4×
100
100
=1895
,
40
δ
n
R
x
=
0,002
1895,4
×
0,00005
1,1
=4,80×10
−11
R
x
=1895
,
40±4,80×10
−11
2)
R
x
=18953,5×
100
1000
=1895
,
35
δ
n
R
x
=
0,1
18953,5
×
0,00005
1,4
=1,88×10
−10
R
x
=1895
,
35±1,88×10
−10
3)
R
x
=1896,5×
1000
1000
=1896
,
50
δ
n
R
x
=
0,002
1896,5
×
0,00005
1,1
=4,79×10
−11
R
x
=1896
,
50±4,79×10
−11
R
X3
Lp
R
1
/R
2
R
P
R
P1
+i
01
R
P2
-i
02
R
X3
ΔR
P
Δi
0
δ
n
R
X
1
100
1000
96000,0- - - -9600,0021,1
9,47×10
−10
2
1000
1000
9600,1 - - - -9600,100,13,0
1,74×10
−10
3
1000
10000
95143,5- - - -9514,3521,3
8,08×10
−10
1)
R
x
=96
,
000×
100
1000
=9600
,
00
δ
n
R
x
=
2
96000,0
×
0,00005
1,1
=9,47×10
−10
R
x
=9600
,
00±9,47×10
−10
2)
R
x
=9600,1×
1000
1000
=9600
,
10
δ
n
R
x
=
0,1
9600,1
×
0,00005
3,0
=1,74×10
−10
R
x
=9600
,
10±1,74×10
−10
3)
R
x
=95143,5×
1000
10000
=9514
,
35
δ
n
R
x
=
2
95143,5
×
0,00005
1,3
=8,08×10
−10
R
x
=9514
,
35±8,08×10
−10
II.Wnioski
[ Pobierz całość w formacie PDF ]